year 22, Issue 86 (5-2023)                   J. Med. Plants 2023, 22(86): 14-26 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salari P, Ghaffari Moghaddam M, Bahreini M, Sharifmoghadam M R. Green synthesis of ZnO nanoparticles from Foeniculum vulgare Mill. seed extract and its antibacterial effects on foodborne bacteria. J. Med. Plants 2023; 22 (86) :14-26
URL: http://jmp.ir/article-1-3476-en.html
1- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
2- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
3- Assistant professor, Biology Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran , Sharif@um.ac.ir
Abstract:   (1694 Views)
Background: Foeniculum vulgare Mill. seeds contain polyphenolic compounds which can be considered a suitable option for the green synthesis of nanoparticles. Objective: In this study, the antibacterial activity against foodborne bacteria of ZnO nanoparticles synthesized from the aqueous extract of Foeniculum vulgare Mill. seeds was evaluated. Methods: The synthesized ZnO nanoparticles were characterized using different analyses. The minimum inhibitory and bactericidal concentration of the nanoparticles were investigated against standard foodborne bacteria, S. aureus, Y. enterocolitica, E. coli O157:H7, and B. cereus, using the broth microdilution method. Results: UV-Vis spectroscopy analysis indicated an absorption peak at 231 nm which confirms the formation of ZnO nanoparticles. In addition, the X-ray diffraction pattern is consistent with the JCPDS cards, which also means the formation of ZnO nanoparticles. The results of the electron microscope revealed that the nanoparticles had a hexagonal shape with an average size of 50 nm, which is in agreement with the results obtained from the dynamic light scattering analysis. In addition, the minimum inhibitory concentration of ZnO nanoparticles against gram-negative and gram-positive bacteria, Y. enterocolitica, E. coli O157:H7, S. aureus, and B. cereus were 62.5, 62.5, 31.25 and 500 µg/ml, respectively. Conclusion: ZnO nanoparticles synthesized from Foeniculum vulgare Mill. seed extract had an appropriate antibacterial effect against foodborne bacteria.
Full-Text [PDF 759 kb]   (1244 Downloads)    
Type of Study: Research | Subject: Medicinal Plants
Received: 2023/01/8 | Accepted: 2023/05/30 | Published: 2023/05/31

References
1. Pachaiappan R, Rajendran S, Ramalingam G, Vo D-VN, Priya PM and Soto-Moscoso M. Green synthesis of zinc oxide nanoparticles by Justicia adhatoda leaves and their antimicrobial activity. Chem. Engin. Technol. 2021; 44(3): 551-558. [DOI:10.1002/ceat.202000470]
2. Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, de Oca-Vásquez GM and Vega-Baudrit JR. Green synthesis of metal nanoparticles from plant extracts, and their possible application as antimicrobial agents in the agricultural area. Nanomaterials 2020 10(9). [DOI:10.3390/nano10091763]
3. Ijaz I, Gilani E, Nazir A and Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews 2020; 13(3): 223-45. [DOI:10.1080/17518253.2020.1802517]
4. Flieger J, Flieger W, Baj J and Maciejewski R. Antioxidants: classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials (Basel). 2021; 14(15): 4135. [DOI:10.3390/ma14154135]
5. Ali MA, Ahmed T, Wu W, Hossain A, Hafeez R, Islam Masum MM, Wang Y, An Q, Sun G and Li B. Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nano. 2020; 10(6): 1146. [DOI:10.3390/nano10061146]
6. Hernández‐Díaz JA, Garza‐García JJ, Zamudio‐Ojeda A, León‐Morales JM, López‐Velázquez JC and García‐Morales S. Plant‐mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. J. Sci. Food Agric. 2021; 101(4): 1270-87. [DOI:10.1002/jsfa.10767]
7. Souza VGL, Rodrigues C, Valente S, Pimenta C, Pires JRA, Alves MM, Santos CF, Coelhoso IM and Fernando AL. Eco-friendly ZnO/Chitosan bionanocomposites films for packaging of fresh poultry meat. Coatings 2020; 10(2): 110. [DOI:10.3390/coatings10020110]
8. Nayak S, Chaudhari A and Vaidhun B. A review of zinc oxide nanoparticles: an evaluation of their synthesis, characterization and ameliorative properties for use in the food, pharmaceutical and cosmetic industries. Journal of Excipients & Food Chemicals 2020; 11(4): 79-92.
9. Aljamali NM, Al Najim MM and Alabbasy AJ. Review on food poisoning (types, causes, symptoms, diagnosis, treatment). GAJPDR. 2021; 3(4): 54-61.
10. Abebe E, Gugsa G and Ahmed M. Review on major food-borne zoonotic bacterial pathogens. J. Trop. Med. 2020; 2020. [DOI:10.1155/2020/4674235]
11. Samadi N and Mohsenzadeh M. The antibacterial effect of fennel (Foeniculum vulgare) essential oil against several foodborne pathogens. In: 2nd International and 25th Iranian Congress on Food Science and Technology; Sari Agricultural Sciences and Natural Resources University. Sari, Iran; 2018: 7. [In Persian].
12. Mehra N, Tamta G and Nand V. A review on nutritional value, phytochemical and pharmacological attributes of Foeniculum vulgare Mill. J. Pharmacognosy and Phytochemistry 2021; 10(2): 1255-63. [DOI:10.22271/phyto.2021.v10.i2q.13983]
13. Bandeira M, Giovanela M, Roesch-Ely M, Devine DM and da Silva Crespo J. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. SCP. 2020; 15: 100223. [DOI:10.1016/j.scp.2020.100223]
14. Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, de Oca-Vásquez GM and Vega-Baudrit JR. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nano. 2020; 10(9): 1763. [DOI:10.3390/nano10091763]
15. Espitia PJP, Soares NdFF, Teófilo RF, Vitor DM, dos Reis Coimbra JS, de Andrade NJ, de Sousa FB, Sinisterra RD and Medeiros EAA. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms. J. Nanoparticle Res. 2013; 15(1): 1-16. [DOI:10.1007/s11051-012-1324-4]
16. Humphries RM, Ambler J, Mitchell SL, Castanheira M, Dingle T, Hindler JA, Koeth L and Sei K. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J. Clin. Microbiol. 2018; 56(4): e01934-17. [DOI:10.1128/JCM.01934-17]
17. Barani M, Masoudi M, Mashreghi M, Makhdoumi A and Eshghi H. Cell-free extract assisted synthesis of ZnO nanoparticles using aquatic bacterial strains: Biological activities and toxicological evaluation. Inter. J. Pharmaceutics: X 2021; 606: 120878. [DOI:10.1016/j.ijpharm.2021.120878]
18. Boukhoubza I, Khenfouch M, Achehboune M, Mothudi BM, Zorkani I and Jorio A. X-ray diffraction investigations of nanostructured ZnO coated with reduced graphene oxide. J. Phys.: Conf. Ser. 2019; 1292: 1-7. IOP Publishing. [DOI:10.1088/1742-6596/1292/1/012011]
19. AL-Asady ZM, AL-Hamdani AH and Hussein MA. Study the optical and morphology properties of zinc oxide nanoparticles. AIP Conference Proceedings 2020: AIP Publishing LLC. [DOI:10.1063/5.0000259]
20. Malika M and Sonawane SS. Effect of nanoparticle mixed ratio on stability and thermo-physical properties of CuO-ZnO/water-based hybrid nanofluid. J. Indian Chem. Soc. 2020; 97(3): 414-9.
21. Siddiqi KS, Rahman A, Tajuddin T and Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters 2018; 13(1): 1-13. [DOI:10.1186/s11671-018-2532-3]
22. Jacob V and Rajiv P. In vitro analysis: the antimicrobial and antioxidant activity of zinc oxide nanoparticles from Curcuma longa. AJPCR. 2019; 12(1): 200-4. [DOI:10.22159/ajpcr.2019.v12i1.28808]
23. Karimi N, Behbahani M, Mirzahosseini H, Dini G and Razmjou A. Green synthesis of ZnO nanoparticles using extract of edible and medicinal plant (Allium jesdianum). RJMS. 2018; 25(9): 1-7. [In Persian].
24. Kosa SA and Zaheer Z. Biogenic fabrication of silver nanoparticles, oxidative dissolution and antimicrobial activities. JSCS. 2022; 26(1): 101414. [DOI:10.1016/j.jscs.2021.101414]
25. Ghafarzadegan R, Yaghoobi M, Momtaz S, Ashoory N, Ghiaci Yekta M and Hajiaghaee R. Process optimization for green synthesis of iron nanoparticles by extract of fenugreek (Trigonella foenum-graecum L.) seeds. J. Med. Plants 2022. 21(81): 22-32. [DOI:10.52547/jmp.21.81.22]
26. Shirazi M.S, Farimani MM, Foroumadi A, Ghanemi K, Benaglia M and Makvandi P. Bioengineered synthesis of phytochemical-adorned green silver oxide (Ag2O) nanoparticles via Mentha pulegium and Ficus carica extracts with high antioxidant, antibacterial, and antifungal activities. Sci. Rep. 2022; 12: 21509. [DOI:10.1038/s41598-022-26021-4]
27. Iqbal J, Andleeb A, Ashraf H, Meer B, Mehmood A, Jan H, Zaman G, Nademm M, Drouet S, Fazal H, Giglioli-Guivarc'h N, Hano Ch and Haider Abbasi B. Potential antimicrobial, antidiabetic, catalytic, antioxidant and ROS/RNS inhibitory activities of Silybum marianum mediated biosynthesized copper oxide nanoparticles. RSC Adv. 2022; 12: 14069-14083. [DOI:10.1039/D2RA01929A]
28. Dzah CS, Duan Y, Zhang H, Wen Ch, Zhang J, Chen G and Ma H. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience 2020. 35: 100547. [DOI:10.1016/j.fbio.2020.100547]
29. Chen W, Liu Y, Song L, Sommerfeld M and Hu Q. Automated accelerated solvent extraction method for total lipid analysis of microalgae. Algal Res. 2020; 51: 102080. [DOI:10.1016/j.algal.2020.102080]
30. Kalasariya HS and Pereira L. Dermo-cosmetic benefits of marine macroalgae-derived phenolic compounds. Appl. Sci. 2022. 12(23): 11954. [DOI:10.3390/app122311954]
31. Tzanova M, Atanasov V, Yaneva Z, Ivanova D and Dinev T. Selectivity of current extraction techniques for flavonoids from plant materials. Processes 2020. 8(10): 1222. [DOI:10.3390/pr8101222]
32. Ojha KS, Aznar R, O'Donnell C and Tiwari BK. Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC. 2020; 122: 115663. [DOI:10.1016/j.trac.2019.115663]
33. Khan M, Dhavan P, Ratna D and Shimpi NG. Ultrasonic-assisted biosynthesis of ZnO nanoparticles using Sonneratia alba leaf extract and investigation of its photocatalytic and biological activities. Journal of Cluster Science 2021; 33(353): 1-17. [DOI:10.1007/s10876-021-02036-1]
34. Saleem M, Naz MY, Shukrullah S, Ali S and Hamdani STA. Ultrasonic biosynthesis of TiO2 nanoparticles for improved self-cleaning and wettability coating of DBD plasma pre-treated cotton fabric. Applied. Physics. A. 2021; 127: 1-12. [DOI:10.1007/s00339-021-04767-4]
35. Alharthi MN, Ismail L, Bellucci S, Jaremko M, Abo-Aba SEM and Salam MA. Biosynthesized zinc oxide nanoparticles using Ziziphus jujube plant extract assisted by ultrasonic irradiation and their biological applications. Separations 2023; 10(2): 78. [DOI:10.3390/separations10020078]
36. Braim FS, Razak NNAN Ab, Aziz AA, Dheyab MA and Ismael LQ. Optimization of ultrasonic-assisted approach for synthesizing a highly stable biocompatible bismuth-coated iron oxide nanoparticles using a face-centered central composite design. Ultrason Sonochem 2023; 95: 106371. [DOI:10.1016/j.ultsonch.2023.106371]
37. Hadinejad F, Jahanshahi M and Morad H. Microwave-assisted and ultrasonic phyto-synthesis of copper nanoparticles: a comparison study. Nano Biomedicine and Engineering 2021; 13(1): 6-19. [DOI:10.5101/nbe.v13i1.p6-19]
38. Urango ACM, Strieder MM, Silva EK and Meireles MAA. Thermosonication process design for recovering bioactive compounds from fennel: A comparative study with conventional extraction techniques. Appl. Sci. 2021; 11(24): 12104. [DOI:10.3390/app112412104]
39. Jiang J, Pi J and Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications 2018; 2018: 1062562. [DOI:10.1155/2018/1062562]
40. Angelopoulou P, Giaouris E and Gardikis K. Applications and prospects of nanotechnology in food and cosmetics preservation. Nanomaterials 2022; 12(7): 1196. [DOI:10.3390/nano12071196]
41. Arumugam M, Manikandan DB, Dhandapani E, Sridhar A, Balakrishnan K, Markandan M and Ramasamy T. Green synthesis of zinc oxide nanoparticles (ZnO NPs) using Syzygium cumini: Potential multifaceted applications on antioxidants, cytotoxic and as nanonutrient for the growth of Sesamum indicum. ET. & I. 2021; 23: 101653. [DOI:10.1016/j.eti.2021.101653]
42. Manohar A, Park J, Geleta DD, Krishnamoorthi C, Thangam R, Kang H and Lee J. Synthesis and characterization of ZnO nanoparticles for photocatalysis, antibacterial and cytotoxicity in kidney cancer (A498) cell lines. Journal of Alloys and Compounds 2021; 874: 159868. [DOI:10.1016/j.jallcom.2021.159868]
43. Dulta K, Koşarsoy Ağçeli G, Chauhan P, Jasrotia R and Chauhan PK. Ecofriendly synthesis of zinc oxide nanoparticles by Carica papaya leaf extract and their applications. Journal of Cluster Science 2022; 33(2): 603-17. [DOI:10.1007/s10876-020-01962-w]
44. Zhuang J, Li M, Pu Y, Ragauskas AJ and Yoo CG. Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Appl. Sci. 2020; 10(12): 4345. [DOI:10.3390/app10124345]
45. Zare M, Namratha K, Byrappa K, Surendra DM, Yallappa S and Hungund B. Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties. Journal of Materials Science and Technology 2018; 34(6): 1035-43. [DOI:10.1016/j.jmst.2017.09.014]
46. Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA and Lisitsyn AB. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 2021; 9: 641481. [DOI:10.3389/fphy.2021.641481]
47. Thi TUD, Nguyen TT, Thi YD, Thi KHT, Phan BT and Pham KN. Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC. Advances 2020; 10(40): 23899-907. [DOI:10.1039/D0RA04926C]
48. Khatami M, Alijani HQ, Heli H and Sharifi I. Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency. Ceramics International 2018; 44(13): 15596-602. [DOI:10.1016/j.ceramint.2018.05.224]
49. Rafique M, Tahir R, Gillani SSA, Tahir MB, Shakil M, Iqbal T and Abdellahi MO. Plant-mediated green synthesis of zinc oxide nanoparticles from Syzygium cumini for seed germination and wastewater purification. International Journal of Environmental Analytical Chemistry 2022; 102(1): 23-38. [DOI:10.1080/03067319.2020.1715379]
50. Gharpure S and Ankamwar B. Synthesis and antimicrobial properties of zinc oxide nanoparticles. J. Nanosci. Nanotechnol. 2020; 20(10): 5977-96. [DOI:10.1166/jnn.2020.18707]
51. Chegini V, Noghabi KA, Afshari KP, Ebadi M and Noghabi KA. Biological synthesis of ZnO nanoparticles using ethanolic extract of Satureja sahendica Bornm: its characterization and antimicrobial features. Biomass Conversion and Biorefinery 2022: 1-12. [DOI:10.1007/s13399-021-02187-1]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Medicinal Plants

Designed & Developed by : Yektaweb